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Abstract

Technology has become an essential part of the education process. Teachers are asked to imple-
ment software and apps into their lessons. Teachers rarely have enough time, relevant training, or
support to sufficiently accomplish this. Traditional training methods such as manuals or workshops
take time away from teachers’ other responsibilities and often present information outside of the
context in which the technology will be used. Inline training offers a way to seamlessly incorporate
training into users’ normal workflow. An inline trainer takes advantage of natural interruptions
as a user navigates a particular software and uses these interruptions as teachable moments. This
reduces the amount of time dedicated to training, personalizes help to each individual user, and
presents new knowledge in the context in which it will be used. In this study, an inline trainer
was designed to help instructors learn to use Moodle, an open-source learning management system.
The design was tested in an experiment consisting of ten subjects who were given a list of tasks
to perform on Moodle and access to the trainer. Through observing and interviewing subjects, a
model was created to represent users’ workflows while completing tasks. This model was used to
categorize three styles of use of the inline trainer: 1) trainer as backup; 2) trainer as guide; and
3) trainer as validator. Lists of the most important interface items, common uses of the trainer, and
requested improvements were also extracted from the data. Based on these lists, recommendations
are made for improvements to the trainer and future research. This project acted as a capstone
for my Brandeis undergraduate experience because it gave me an opportunity to combine and use
much of what I have learned in my computer science and education coursework to create a real tool
to help teachers learn to use technology.
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1 Introduction

Preparing teachers to use technology is a is a multifaceted issue. In addition the challenges faced
by the general population when it comes to learning to use technology, teachers face a unique set of
challenges such as the lack of time to to learn and practice technology as well as insufficient access
to technical support ( Becta, 2004; Peck et al., 2011; Toprakci, 2006; Dexter et al., 2002; Kirkwood
et al., 2000; Inan and Lowther, 2010). As technology becomes more prevalent in the classroom,
teachers need a simple way gain technical proficiency in a way that does not overlap with their
other duties. An inline trainer (Krisler, 2014) could help teachers learn to use a particular software
as they use it, without requiring additional outside training. Such a trainer would act as a reference
on the edge of the screen, providing interactive instructions to complete actions as necessary.

In this paper, I will review the literature relevant to learning, technology training, teachers and
technology, and inline trainers. I will then describe the design of an inline trainer created as a
plugin to help instructors learn how to use Moodle1 to manage their courses. I will detail a pilot
study involving users completing Moodle tasks with the assistance of the trainer. The purpose of
the study was to:

i. Categorize different styles of use of the inline trainer
ii. Create a model to represent the ways in which users incorporate the inline trainer into their

workflow as they navigate the Moodle interface
iii. Identify the features and uses of the trainer the users perceive as most helpful
iv. Generate a list of improvements for future iterations of the inline trainer

Based on the data collected in the study, I will present a model representing the ways in which
subjects completed tasks within Moodle. Subjects’ use of the trainer within this model was clas-
sified into three distinct styles: 1) trainer as backup; 2) trainer as guide; 3) trainer as validator.
Additionally, I will highlight important interface features, uses of the trainer, and requested im-
provements. Based on the data gathered from the pilot study, I will recommend changes to the
trainer for further research and use as an instructional tool.

1.1 Overview of the process

The goal was to develop an approach to training teachers to use technology. I chose to focus on
Moodle, as it is the learning management system (LMS) at Brandeis and is therefore familiar to
faculty, staff, and students. Moodle is a powerful LMS, but complex and often difficult to navigate.
Because of this, many instructors use only its most basic features. To help instructors learn to
use more features of Moodle, I designed and developed an inline trainer. The idea of an inline
trainer is to use naturally-occurring interruptions in the use of software as opportunities to learn
more about the software. This project enabled me to practice the things that I learned during my
undergraduate education in both computer science and education.

1.1.1 HCI and Software Development

After reviewing Dr. Brian Krisler’s 2014 previous work with inline trainers, I created a proof-
of-concept plugin to see if such an inline trainer was technically viable in the context of Moodle.
After determining such a plugin was possible, I began to collect data via informal surveys to
determine the types of actions that should be included and the taxonomy under which they should
be classified. After collecting this background data, I created a prototype of the inline trainer
outside of Moodle. I obtained feedback on the design and functionality of the prototype through
informal demonstrations and trials.

Based on the feedback I received for the prototype, I created the earliest iteration of the current

1Moodle is an online, open-source learning management system
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Moodle plugin. I conducted another round of surveys of faculty at Brandeis University to determine
which types of Moodle actions they knew and did not know, as well as gauge which types of actions
they would be interested in learning. I met with instructors to discuss their workflow in Moodle
to develop use cases. I consulted with members of the Brandeis technology support department
to talk about the feasibility of installing and maintaining such a plugin on the instance of Moodle
at Brandeis, known as the Learning and Teaching Technology Environment (LATTE). Using this
feedback, I continued to develop the plugin.

Further discussion of the various stages of development as well as links to the source code
repositories can be found in Appendix A.

1.1.2 Experimental design, data collection & analysis

The pilot study involved a group of subjects who were given tasks to complete on Moodle. I created
the tasks based on the use cases from the development phase. I chose a number of tasks of varying
levels of difficulty and familiarity2. The experiments were conducted in two rounds, with changes
made to the trainer interface between the two rounds based on observations and feedback from
the first round. The first round consisted of two sessions per subject with one day in between the
sessions; the second round consisted of one session per subject. Each session had a different list of
tasks for subjects to complete.

I developed a second Moodle plugin to help administer the experiments. The plugin allowed me
to quickly create user accounts and test courses that were pre-populated to resemble the Moodle
pages of existing Brandeis course. Further discussion of the experiment plugin as well as a link to
the source code repository can be found in Appendix B.

Before subjects completed their assigned tasks, they responded to a survey of demographic
information and their experience and comfort level using technology. As they completed the tasks,
they were instructed to talk aloud. The computer screen and subjects’ voices were recorded for
analysis.

The videos were coded using Atlas.TI3. The built-in analysis features in Atlas.TI are limited,
so I created a web-based tool to parse the XML Atlas.TI project files. I used this to compare and
analyze the codes applied to the video files. Further discussion of the analysis tool as well as a link
to the source code repository can be found in Appendix C.

Based on the analysis, I created a model of subjects’ workflows as they completed the tasks.
From this model, I highlighted three distinct styles in which the trainer was utilized. I also created
lists of important features and uses of the trainer, as well as suggested improvements.

2I determined the functionality with which faculty were most and least familiar through informal surveys
3ATLAS.ti: The Qualitative Data Analysis & Research Software (https://atlasti.com/)
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2 Review of Literature

2.1 Technology Training and Learning

2.1.1 Cognitive Skill Acquisition

VanLehn (1996) defines cognitive skills as skills necessary for any problem that relies primarily
on specific knowledge, rather than physical abilities, to solve. Cognitive skill acquisition occurs in
three phases:

Early: The learner looks to gain domain knowledge before trying to apply it. This phase generally
involves information-gathering through reading and discussion.

Intermediate: The learner corrects flaws in domain knowledge and begins to apply the skill to
real problems. During this phase, the learner acquires skills by retrieving prior knowledge,
mapping it to the current problem, and then generalizing it to solve future problems.

Late: The learner practices the skill to gain speed and accuracy. The time the learner takes
to perform the task decreases proportionately to the number of times it has already been
performed, raised to some power.

The distinction between each of these phases is not always clear in practice. The phases may also
overlap. Nevertheless, the three phases provide a general framework with which to study cognitive
skill acquisition.

2.1.2 Distributed Cognition

Perkins (1997) suggests that human cognition extends beyond the person and into the surrounding
environment. This person plus surround, or person-plus, approach includes any tools a person may
use to help store and retrieve knowledge, such as a book, notebook, or other artifact. This provides
a more power cognitive system than person-solo, which is just the knowledge contained in the mind
of a person. Within a person-plus system, executive function is often distributed in many ways. If
a person is learning a new skill, he or she may relinquish executive control to the surround. This
may be in the form of reading a book, following instructions given by an instructor, or working
through a worksheet. Executive function is gradually taken back by the learner as the knowledge
is transferred.

2.1.3 Cognitive Artifacts

Norman (1991) defines a cognitive artifact as “an artificial device designed to maintain, display, or
operate upon information in order to serve a representational function” (p. 17). Although artifacts
enhance performance, they do not amplify abilities. They modify the task that must be performed
in such a way that a person can complete them more easily. They change tasks in three main ways
(Norman, 1991, p. 22):

Distribute the actions across time (precomputation);
Distribute the actions across people (distributed cognition);
Change the actions required of the individuals doing the activity.

For example, consider the process of grocery shopping. Without any artifacts, the task takes
place primarily at the grocery store. The person must mentally track which items have been
purchased and which are still needed. Introducing an artifact, such as a list, changes the task.
The cognitive work is front-loaded during the construction of the list, which takes place before the
shopping trip. While the person is shopping, they no longer need to rely on their memory – her or
she can refer to the list and cross items off as they are purchased (Norman, 1991).
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2.1.4 Technology training

As the role of technology in jobs continues to grow, more attention is given to the the ways in
which training is structured. Some technology training focuses on features of the software rather
than its usage. Through this model, users may be able to explain what components of the software
can do, but not how use them. Because trainees often do not hold a role whose primary function
is to use technology, an approach that focuses on the how aspects is necessary for effective training
Bostrom et al. (1986).

End-user training (EUT) is one approach to technology training that aims for two outcomes:
1) trainees gain a basic understanding of the system and 2) trainees have high motivation to use
the system. In order to gain a basic understanding, trainees must be able to create a mental model
of the system. This mental model represents the user’s understanding of the system at hand. The
basis of the mental model can originate externally from the user, but it must be internalized through
exploration and explanation for the training to be effective (Bostrom et al., 1986). Laoledchai et al.
(2008) propose an expanded version of EUT that also takes attitude into consideration. Even if
trainees gain new skills or abilities during training, they are unlikely to transfer these into their
work if they believe the training to be ineffective (Laoledchai et al., 2008).

2.2 Teachers and technology

2.2.1 Problems with existing technology training

Lack of proper technology training and/or ongoing support are two of the perceived largest barriers
that discourage teachers from utilizing technology ( Becta, 2004; Peck et al., 2011; Toprakci, 2006;
Dexter et al., 2002; Kirkwood et al., 2000; Inan and Lowther, 2010). Inan and Lowther (2010)
studied eight factors hypothesized to affect teachers’ use of technology: 1) age, 2) years of teach-
ing, 3) computer proficiency, 4) computer availability, 5) teachers’ beliefs, 6) teachers’ readiness,
7) overall support, and 8) technical support. Out of these factors, teachers’ readiness was found to
have the strongest direct effect on technology integration. Teachers’ readiness was most strongly
affected by their computer proficiency, followed by overall support and technical support. In other
studies, teachers expressed frustration that they were given short (if any) trainings and expected
to learn the rest on their own time ( Becta, 2004; Peck et al., 2011). As part of a case study in
a U.S. high school where digital tablets were given to all staff with limited training, Peck et al.
(2011) found that some teachers abandoned the devices all together after becoming frustrated at
the lack of training they received and the amount of time learning to use the tablets independently
would take out of their instructional time.

Technology training is often not delivered in a way that is relevant to teachers (Granger et al.,
2002; McKenzie, 2001; Kirkwood et al., 2000). McKenzie (2001) notes that training often lacks
differentiation for personal preferences or technological abilities. Kirkwood et al. (2000) found
that traditional teacher technology training often focuses on just the basics of using a particular
technology, which are quickly forgotten because other aspects of teaching take priority in teachers’
minds. Additionally, technology instruction is often provided outside of the context of the classroom
(Granger et al., 2002; McKenzie, 2001). Technology training tends to focus primarily on the
functionality of various tools and not ways in which the tools can be implemented in the classroom.
Without contextualizing the use of technology into teaching practice, many teachers are left to
wonder whether the technology is actually a valuable tool (McKenzie, 2001).

Even when given sufficient training, teachers often lack access to ongoing technological support
as they implement technology in their classes. A national survey of teachers found that access to
quality technology support was associated with increasing use of technology (Dexter et al., 2002). It
was also also found that quality technology support was correlated with more frequency and variety
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of uses of technology over time. Thorsteinsson and Niculescu (2012) concluded that teachers who
are not comfortable with technology rely on support and often must go out of their way to get it.
Meanwhile, teachers who are more familiar with technology help their peers and, which interrupts
them from completing their own work. Teachers have very limited time to devote to learning
and incorporating technology Kirkwood et al. (2000); Becta (2004); Thorsteinsson and Niculescu
(2012). Kirkwood et al. (2000) observed that a voluntary training program for teachers is difficult
to justify, because it requires them to give up time that could be otherwise spent completing other
tasks. Becta (2004) noted that in general, schools do not have enough time to provide meaningful
technology training for teachers. Thorsteinsson and Niculescu (2012) found that even looking at
technology-related help materials provided to teachers could be too time-consuming and therefore
ruled out as an option as problems arose.

2.2.2 Recommended best practices for technology training

Zhao and Cziko (2001) propose Perceptual Control Theory (PCT) as a framework to understand
teachers’ use of technology. They suggest that human behavior is a result of trying to achieve
internal goals. In order for someone to behave a certain way, they must internalize the end result
as a goal towards which to strive. Because of this, PCT requires that three conditions are met in
order for teachers to use technology (Zhao and Cziko, 2001, p. 6):

1. The teacher must believe that technology can more effectively meet a higher-level goal than
what has been used.

2. The teacher must believe that using technology will not cause disturbances to other higher-
level goals that the he or she thinks are more important than the one being maintained.

3. The teacher must believe that he or she has or will have sufficient ability and resources to
use technology.

Kirkwood et al. (2000) recommend differentiating training to meet individual teachers’ needs
based on their level of use and understanding of technology. Teachers with less technology experi-
ence need more scaffolding to fully engage with technology.

Burns and Dimock (2007) propose a 5J approach to technology training (p. 23):

Job-related: Focused on classroom (i.e., instructional and curricular) needs
Just enough: Emphasizing increased comfort, not proficiency, with computers
Just in time: Providing teachers with skills as needed and focused on using only the tools they

have at their immediate disposal
Just in case: Encouraging teachers to plan sufficiently in the event of a computer malfunction
Just try it: Applying enough pressure and support to impel teachers to use computers in their

classrooms

“Just enough” and “just in time” address the previously-discussed issue of providing context
during technology training. These two Js ensure that training only encompasses what teachers need
to know in order to leverage technology as pedagogical tools. It keeps the training brief and relevant
to their classes. Granger et al. (2002) found that teachers reported that just in time learning is the
most effective way for them to learn technology. This informal approach gives teachers a tangible
experience during learning which makes it easy to connect to their practice. It also gives them
more autonomy over their learning and helps them build the skills necessary to keep learning as
they need Granger et al. (2002).
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2.3 Inline trainer

An inline trainer is a tool designed to help people learn to use software by using naturally
occurring interruptions to introduce new application knowledge (Krisler, 2014). The trainer is a
form of scaffolding, which refers to a technique where support is provided to novice users and
gradually removed as their proficiency builds (Wood et al., 1976). During task interruptions that
are caused by a lack of application knowledge, the user’s exploration of the functionality of the
application can be mediated by the use of the inline trainer. In this manner, exploration of new
functionality is scaffolded by the trainer. Over time, the user learns to perform a particular task
and the trainer becomes less necessary for the completion of that task.

There are many sources of interruptions while using software, but one common type is an inquiry
interruption (Jin and Dabbish, 2009). An inquiry interruption occurs if a user is unable to continue
with the current task because they do not have enough knowledge about the application. In order
to recover from this interruption, the user must redirect their attention away from the task. Bødker
(1995) categorizes redirects as either breakdowns or focus shifts. Breakdowns are caused externally
from the user, such as when the tool behaves in an unexpected way. Focus shifts occur when the
user deliberately diverts his or her attention from the task, such as to explore the tool to determine
how to proceed (Krisler and Alterman, 2008).

In EUT model discussed earlier, Bostrom et al. (1986) describes the process through which
mental models are formed. The two ways to start this process are mapping via usage and mapping
via training (i.e. using an external representations of the functionality of the system). The inline
trainer allows the user to go through both of these routes. The user is free to explore the interface
and build up his or her mental model through usage and completion of tasks. When an interruption
occurs due to lack of knowledge about how to use the application, the user can seamlessly transition
to the representation of the system contained in the trainer to further develop his or her mental
model.
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3 Design of the Inline Trainer

Figure 3.1: When not collapsed, the trainer sits on the edge of the screen.

Figure 3.2: When the trainer is collapsed, it displays as a small blue button in the upper-right
corner of the screen. Clicking the button un-collapses the trainer.

The inline trainer was developed as a plugin for Moodle, based on prior research by Krisler
(2014). It was designed to sit on the side of the screen to provide easy access when users need it
and be unobtrusive when they do not (Figure 3.1). Users can move the trainer to any position on
the screen by clicking and dragging the blue title bar at the top. Because the trainer is directly
embedded in Moodle, users can access information to help them accomplish tasks while minimizing
the scale of the interruption necessary to do so Krisler (2014). The trainer can be collapsed into a
small button when it is necessary to see the whole screen (Figure 3.2).
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Figure 3.3: Anatomy of the inline trainer

The trainer uses a tabbed viewing system to help users easily keep track of and find actions.
The “All” tab (1 in Figure 3.3) provides a list of all the actions. The “Favorites” tab (2 in Figure
3.3) provides a list of actions users have identified as their favorites, allowing them to quickly pick
out these actions from the list. The “Recents” tab (3 in Figure 3.3) shows a list of the five most
recently used actions.

In the “All” tab, actions (6 in Figure 3.3) are organized into a taxonomy of categories (4 in Figure
3.3) and subcategories (5 in Figure 3.3). Users can click the names of categories, subcategories,
and actions to open and close them. Clicking the star icon next to action names (7 in Figure 3.3)
toggles the action as a favorite. An action is in the “favorites” list when the star is solid gold.

When an action is open, a list of steps (8 in Figure 3.3) is displayed. Completed steps are
crossed out and future steps are written in gray text to help the user identify the current step that
needs to be completed.

If the user is unable to figure out how to complete the current step in the Moodle interface, he
can click the “overlay help” icon (9 in Figure 3.3) to display an overlay on the screen that identifies
the item required to complete the step (Figure 3.4). If the trainer is blocking the item necessary
to complete the action, it will slide out of the way when the “overlay help” button is clicked.
Similarly, if the item is not within the view of the browser window, the trainer will scroll up or
down on the page until the item is in view. The scrolling is animated to help the user understand
what is happening and identify where the item is on the page relative to their original position.

The trainer automatically keeps track of step completion as the user navigates Moodle, even
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Figure 3.4: The trainer provides overlays to help users identify the target element of the Moodle
interface in a given step

when the trainer is collapsed. Because of this, a user can start an action without using the trainer.
If he gets stuck, he can open the trainer, find the action he is trying to complete, and see exactly
what he needs to do next. The trainer also watches for steps to be undone in case the user makes
a mistake or gets lost in the process of completing the action. The trainer is capable of keeping
track of multiple step completions or un-completions at once. For example, if a user is on step 6 of
an action and accidentally navigates to a page that undoes steps 2-5, the trainer will automatically
set the current step to 2 and walk the user through the steps that have been undone.

Each action has a “Start over” button (10 in Figure 3.3) that resets the action to the first step
in case the user needs to repeat an action or becomes confused and wishes to start over.

Interactions that affect the display of the trainer (e.g. collapsing and repositioning the trainer;
opening and closing categories, subcategories, and steps) are automatically stored and retrieved as
the user navigates between pages on Moodle so that the trainer display remains consistent.
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4 Pilot Study

4.1 Motivation

Krisler and Alterman (2018) established inline training as a way to promote a deeper un-
derstanding of software applications built into users’ workflows. The Moodle inline trainer was
motivated by a need to optimize the technology training provided to teachers. Such a trainer could
save time and provide teachers with support, which are two of the largest barriers to teachers’ use
of technology ( Becta, 2004; Peck et al., 2011; Toprakci, 2006; Dexter et al., 2002; Kirkwood et al.,
2000; Inan and Lowther, 2010).

4.2 Research Questions

The research seeks to:
i. Create a model to represent the ways in which users incorporate the inline trainer into their

workflow as they navigate the Moodle interface
ii. Categorize different styles of use of the inline trainer

iii. Identify the features and uses of the trainer the users perceive as most helpful
iv. Generate a list of improvements for future iterations of the inline trainer

4.3 Experimental Design

The experimental design consisted of a series of tasks, each designed to replicate the workflow of
a college-level instructor setting up a course page in Moodle, an open-source Learning Management
System (LMS) used by Brandeis University and many other higher education institutions (Costello,
2013). The tasks fell into three main categories based on functionality in Moodle: course calendar,
assignments, and grade book.

Two sets of user observations were conducted. The first round of observations had eight partic-
ipants and the second round had two. Changes were made to the trainer interface between the two
rounds in response to user feedback and use of the trainer in the first set of observations. These
changes are detailed in Appendix D.

The first round of observation included sessions on two separate days with one day in between
(Session 1.1 and Session 1.2). The first day included four tasks and the second day included two.
Prior to starting the tasks on the first day, subjects were provided with a printed and computer-
based copy of Moodle documentation. They were also shown a video overviewing the trainer
interface and functionality. Finally, they were given a sample task to complete using the trainer as
a guide to practice using the interface. Subjects were told they could refer to the documentation
and trainer as necessary throughout the rest of the tasks, however neither was required. On the
second day, subjects were given access to and reminded of the documentation and trainer. Once
again, they were told they could use either but were not required to do so.

The second round of observation took place with a single session for each subject (Session
2.1). The subject was given three tasks to complete. They were given the same instructions,
documentation, and video as the subjects on the first day of the first round of observations.

4.3.1 Subjects

All participants in the study were affiliated with Brandeis as faculty or students. There were
10 subjects: 2 instructors, 1 department administrator, 1 graduate student, and 6 undergraduate
students. All had some degree of experience using LATTE4 as an instructor, teaching assistant,
student, or some combination of these roles. Subjects were not provided with any compensation.

4Learning and Teaching Technology Environment, the instance of Moodle used at Brandeis University
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Prior to the pilot study, subjects were asked to complete a survey of demographic information
and experience using technology. One question asked subjects to evaluate their level of technological
literacy by choosing the statement with which they identified the most. The statements and number
of subjects who identified with each is listed in Table 4.1. A full list of survey questions can be
found in Appendix E.

Statement Number of subjects

I am excellent with technology; I can help others use it 2

I’m very comfortable with technology 4

I can use technology 3

I can use basic technology, but in a limited way 1

I’m uncomfortable with technology 0

Table 4.1: Subjects were asked to select the statement with which they agreed the most prior to
completing the tasks on their first session.

4.3.2 Tasks

Figures 4.1, 4.2, and 4.3 show the list of tasks users were asked to perform. Each task specified the
necessary content for completion (e.g. title, description, due date, and point value of assignment).
The tasks were chosen to represent a variety of features in Moodle. They were presented in order
of increasing difficulty, which was determined by several factors. The first factor was the number of
steps required to complete the action. Actions that required relatively fewer steps were considered
easier. The second factor was the depth of the mental model of Moodle’s interface required to
complete the tasks. Simpler tasks do not require extensive knowledge of the way Moodle operates.
For example, creating an assignment only requires general knowledge of creating a new item in
a course. After the process to create a new item is initiated, the interface provides all of the
information necessary to complete the task. Complex tasks require more background knowledge
about the way Moodle processes internal objects. For example, setting up the grade book requires
knowledge of Moodle’s grading structure, types of grade aggregation, and the levels at which
these types can be specified. This knowledge is not presented directly in the interface; it requires
exploration or external guidance. The third and final factor was the likelihood that the user had
completed a given task (or similar task) previously. This was determined by surveying previous
Moodle users and consulting the team who runs Moodle at Brandeis.

1.0 Sample task - set up course calendar
1.1 Create a specified calendar entry
1.2 Edit the created calendar entry
1.3 Create two specified graded assignments (1.3.1 and 1.3.2)
1.4 Create two specified ungraded assignments (1.4.1 and 1.4.2)

Figure 4.1: Tasks given to users during Session 1.1

4.3.3 Informational materials

The manual given to subjects was provided as a printed document as well as a PDF on the computer
used to complete the tasks. It was composed of documentation published on the Brandeis website
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2.1 Create two specified graded assignments (2.1.1 and 2.1.2)
2.2 Set up the the course grade book based on specified syllabus

Figure 4.2: Tasks given to users during Session 1.2

3.1 Create a specified calendar entry
3.2 Create two specified graded assignments (3.2.1 and 3.2.2)
3.3 Set up the course grade book based on specified syllabus

Figure 4.3: Tasks given to users during Session 2.1

that was relevant to the tasks the subjects were asked to perform.
The video that was played for users overviewed the functionality of the trainer. It included

the manipulation of the trainer (moving/hiding/showing, hiding/showing categories, subcategories,
and tasks), the layout of steps required to complete a task, the behavior of the trainer as the user
completes tasks, and the overlay button. The video lasted approximately 80 seconds.

4.3.4 Apparatus

For the experiments, a customized instance of Moodle 3.3, referred to as Moodle Optimized for
Conducting Human Analysis (MOCHA), was deployed. MOCHA was used exclusively for the
purposes of the experiment and contained no real course data. It was accessible publicly via the
internet, with security settings enabled so that no data were visible without logging in. Only the
researcher had credentials to access the site.

MOCHA was set up with the built-in Clean theme to provide subjects with an interface very
similar to that of LATTE, which also uses the Clean theme lightly customized through CSS. Because
of this, the MOCHA and LATTE interfaces had differing colors but otherwise nearly identical
layouts.

The MOCHA environment had two custom plugins, both developed by the author for this
research. The first plugin added the inline trainer interface and controls necessary to display it.
The second plugin automated the process of creating user accounts and courses for the subjects
in the experiment. The technical details and links to the source code for these two plugins can
be found in the appendices. The courses were modeled after a set of writing courses offered at
Brandeis University to provide familiarity to participants. The courses were set up to use the
“topics” display mode and pre-populated with three topics: “Close Read,” “Lens Analysis,” and
“Research Synthesis.” They were not populated with any other content.

Each participant had a separate user account given “teacher” privileges for unique courses on
MOCHA. No participants had access to the same course. Usernames and passwords were generated
by the researcher. The researcher signed into the corresponding account prior to starting each
session, eliminating the need to share login credentials with the participants. Participants who
performed tasks over two sessions were given separate courses for each session. This gave them the
opportunity to start without clutter or potential mistakes from previous sessions while preserving
the data they created.

The experiment was proctored by the researcher. Subjects performed the tasks on a 15” late
2013 MacBook Pro running macOS 10.13 High Sierra with a high-speed wireless internet connection.
The taskbar had Finder, Google Chrome, Quicktime, and shortcuts to the PDF version of the
Moodle documentation and trainer introductory video. Subjects accessed MOCHA using the web
browser Google Chrome. They were logged in through an “incognito window” in Chrome to ensure
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their browsing session would be destroyed upon completion and closing of the window. During the
experiment, Quicktime ran in the background (with the subject’s consent) to record the screen and
audio of the experiment session. The researcher sat adjacent to the subject throughout the session
to observe and note use of the trainer for follow up questions.

4.3.5 Procedure

Each subject was required to sign a consent form prior to the start of the experiment. The subject
then filled out a web-based demographic survey that included information about experience using
specific functionalities in LATTE and general comfort level in using technology. After the survey,
the researcher gave the subject the printed documentation, showed the subject the PDF version,
and played the video about the inline trainer. Screen and audio recording began after the video.
The use of video recording was included in the consent form and explicitly explained to the subject.
The subject was given a sample task of setting up the course calendar and instructed to use the
trainer to become acquainted with it. After completion of the sample task, the subject was given
a handout with the rest of the tasks and the following instructions:

• They are a professor of a writing course setting up their course page at the beginning of the
semester, which requires them to complete the following tasks

• They may use the written tutorial or inline trainer as necessary, but are not required to use
either

• If they are unable to complete any of the tasks, they may skip them
• Getting stuck on a task is a reflection of the design of the interface, not their technical abilities
• They should talk aloud with their thought process as they complete their tasks
After the subjects completed the tasks, the researcher followed up with a list of questions

(Figures 4.4, 4.5, 4.6). QuickTime continued to record to capture the subjects’ answers.
In the first round of experiments, the subjects returned two days after the first session for a

second round of tasks. They were given the same set of instructions as the first session with a new
list of tasks (Figure 4.2). After the tasks were completed, participants were asked a different set of
questions (Figure 4.5).

1.1 Was the trainer helpful? If so, how?
1.2 Would you incorporate the trainer into your workflow if you had to perform instructor tasks

in the real version of LATTE?
1.3 How would you compare using the trainer for the calendar tasks vs. the assignment tasks?
1.4 What would you change about the trainer?

Figure 4.4: Questions asked after Session 1.1

2.1 Was the trainer helpful? If so, how?
2.2 Would you incorporate the trainer into your workflow if you had to perform instructor tasks

in the real version of LATTE?
2.3 How would you compare using the trainer for the assignment tasks vs. using it for the grade

book setup?
2.4 If the subject did or did not use the trainer in unexpected ways throughout either session,

the experimenter followed up with specific questions.

Figure 4.5: Questions asked after Session 1.2
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3.1 Was the trainer helpful? If so, how?
3.2 Would you incorporate the trainer into your workflow if you had to perform instructor tasks

in the real version of LATTE?
3.3 How would you compare using the trainer for the assignment tasks vs. using it for the grade

book setup?
3.4 What would you change about the trainer?
3.5 If the subject did or did not use the trainer in unexpected ways throughout the session, the

experimenter followed up with specific questions.

Figure 4.6: Questions asked after Session 2.1

4.3.6 Data collection and analysis

Data were collected by recording the screen and voice of the participant while they were completing
the tasks and answering the questions. After each session was complete, the video was saved and
uploaded to a private Dropbox folder. Videos were imported to Atlas.TI, software to help with
qualitative data analysis. In Atlas.TI, they were coded according to types of tasks, styles of use,
and problems encountered.

Based on the video and the subjects’ spoken comments, each task was transcribed to help trace
through the operations. Example transcriptions are provided in Table 4.2. The transcriptions were
used to help build and validate a model of users’ workflows with the trainer and characterize the
different ways in which the trainer was used. The model and characterizations are discussed in the
Results section.

Subject Task Description

kqmp 1.1 Opens “add entry to calendar” in trainer. Reads “scroll to the calendar
block. . . ” step. Scrolls down and finds calendar block. Notes that event is
on “21st of March” and clicks title of month. Reads “click new event” step.
Scrolls down page to look for button. Scrolls back up, moves trainer over,
reveals button blocked by trainer. Clicks button. Fills in title. Fills in date.
Clarifies meaning of tasks on handout. Clicks save button.

kqmp 1.2 Moves mouse over gear icon, does not click. Opens “edit calendar entry”
action in trainer. Reads “click the gear icon” step. Clicks gear icon. Scrolls
down to duration section of form and specifies duration. Clicks save button.

Table 4.2: To help analyze the data more easily, each task was transcribed for each user. Tran-
scriptions included interactions with the page and anything the user said aloud as they completed
the task.
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5 Results

The interview questions (Figures 4.4, 4.5, and 4.6) asked users whether they found the trainer
useful and if they could envision themselves incorporating the trainer into their workflow if fulfilling
the role of an instructor in real life. Subjects unanimously answered yes to both. This section will
look at a model of the ways in which the trainer was used, specific styles in which subjects used
the trainer, and specific perceptions users had about using the trainer.

5.1 Model of Trainer Use

A model of the process through which users completed the tasks and a sample iteration through
the model are shown in Figure 5.1. The rectangles represent various states in which subjects found
themselves as they completed tasks. Each state is labeled with a question the subject implicitly or
explicitly used to exit the state. The transitions between the states are labeled with the answer to
the state question.

In the model, the tasks correspond to the lists of tasks described in the section. An operation
is defined as an atomic step towards completing an action, such as clicking a button or filling in a
form field. A session is defined a period of time in which subjects completed a distinct set of tasks.
The entry point to the model is the session to allow for transitions to and from tasks, even after
completion.

Two questions acted as turning points for the use or non-use of the trainer: “Do I know what to
do?” and “Do I know how to do it?” Although these two questions are similar, there were instances
where the subject knew what to do next (e.g. “I need to click something to bring up the edit page
for this calendar entry”) but not how to accomplish it (e.g. “I do not know what to click to make
this happen”). Subjects who entered the “Do I know what to do?” state and initially followed the
“no” path tended to discover what to do and how to do it simultaneously, either by searching the
interface and finding an element they deemed helpful or by checking the trainer.

The model is written from the perspective of the user. Therefore, “knowing” what to do next
or how to do it means the subject has decided how to proceed. It does not imply that the operation
will advance them further in the completion of the current task.

5.1.1 Three different styles of usage

The model was created to encompass almost any path subjects took as they completed their tasks.
Most subjects eventually visited nearly all of the transitions in the model. However, the order
and frequency with which certain paths were visited can be broken down into three styles of usage
depending on the way the subject used the trainer:

1. Trainer as a backup
2. Trainer as a guide
3. Trainer as a validator
Subjects often switched between styles of use, particularly as the tasks became more difficult.

All subjects switched to “Trainer as a guide” by the end of grade book setup task (Task 2.2 or 3.3).

5.1.1.1 Trainer as a backup In this style, the workflow is primarily driven by trial and error
and/or prior knowledge. The user retains executive control throughout the majority of the session.
If starting an unfamiliar task new task, the user may check trainer in the beginning to determine
a starting point. After starting the task, the user starts most operations by searching through
page, only referring to trainer upon getting stuck stuck. If the what component of the operation is
discovered through the trainer but the how component is not, the user searches through the page
in an attempt to discover the how. The overlay feature of the trainer is only invoked if searching
does not work, which generally occurs only when the trainer is blocking the target element.
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Figure 5.2 shows extracts of the model with the paths that represent two ways users discovered
information about the Moodle interface colored. Users who used the trainer as a backup spent
most of their time in the trial and error path in Figure 5.2(a), only occasionally switching to the
trainer path in Figure 5.2(b) when they became stuck.

5.1.1.2 Trainer as a guide In this style, the user actively refers to the trainer through the
process of completing a task. The trainer holds executive control throughout the majority of the
task. The user generally begins each operation by referring to the trainer. They may use trial and
error intermittently throughout the process, but this is not the driving method of discovery.

Users who used the trainer as a backup spent most of their time in the trainer path in Figure
5.2(b). They occasionally switched to the trial and error path in Figure 5.2(a), but tended to return
to the trainer path frequently.

5.1.1.3 Trainer as a validator In this style, users completed most or all of a given task
without using the trainer. This style tended to be used in conjunction with the “trainer as backup”
style. After users executed a sequential set of operations, they referred to the trainer to check their
work against the crossed-off steps in the trainer. In some cases, this prompted users to realize
mistakes that may have occurred in previous tasks and led them to recheck tasks they previously
thought to be complete.

Figure 5.3 shows a diagram of this style of use. After completing most or all of a given task,
users returned to the “Did I complete the task correctly?” state. Instead of proceeding to the
next operation, they returned to a previous operation and referred to the trainer to check if it was
correct. If the operation was determined to be completed incorrectly, it was adjusted using the
information gained from the trainer and executed again.

5.2 Difficulty of tasks and the trainer

Questions 1.3, 2.3, and 3.3 (Figures 4.4, 4.5, and 4.6) asked subjects to compare using the
trainer between the calendar and assignment tasks (Question 1.3) and between the assignment
and grade book tasks (Questions 2.3 and 3.3). For question 1.3, subjects responded either that
they did not notice major differences between the use of the trainer for the two tasks or that they
found the trainer to be more important to the assignment task, classifying the assignment task
as more difficult. For questions 2.3 and 3.3, subjects unanimously found the trainer to be more
important to complete grade book task, classifying the grade book setup as more difficult than
creating assignments.

Subjects tended to agree that more “intuitive” tasks such as creating assignments could eventu-
ally be figured out without any aid by exploring the interface. However, many doubted their ability
to complete the harder grade book task if they had been asked to complete it without having access
to the trainer or other instructional material.

5.3 Best interface features

Table 5.1 shows a list of useful interface features highlighted as useful by subjects during the
interview questions (Figures 4.4, 4.5, and 4.6). By this measure, the overlay and automatic crossing
off of the steps were the most appreciated interface features. Subjects cited the overlay as partic-
ularly useful in situations where the trainer was blocking the element on the screen necessary to
execute the operation. The crossing off of the steps was cited as helpful for rechecking previous
operations and tasks as well as keeping track of where subjects were in the process of the current
task.
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Feature Number of subjects

Overlay 4

Steps cross off 4

Move/minimize trainer 2

Steps correspond to interface 2

Some steps are optional 1

Table 5.1: Features highlighted by subjects as particularly useful during interviews

5.4 Highlighted uses of the trainer

Table 5.2 shows a list of uses of the trainer highlighted as useful by subjects during the interview
questions (Figures 4.4, 4.5, and 4.6). When asked if they would incorporate the trainer into their
workflow (Questions 1.2, 2.2, and 3.2), some users responded they would as they were learning to
use Moodle, anticipating their use of the trainer to fade over time, like the scaffolding proposed by
Wood et al. (1976).

Additionally, subjects identified several advantages of using the trainer over a traditional user
guide or manual:

• Because the trainer is aware of the context, it offers an immediate answer to the question
at hand. It can also quickly get users “unstuck” or give them reminders of information they
may already know.

• It is faster to scan through the trainer than to read through documentation to solve a problem.
• It narrows down the interface items to just those essential to completing the task.

Use Number of subjects

Fading scaffolding 4

Answers specific questions 3

Corrects errors 2

Gets “unstuck” 2

Faster than reading the manual 1

Narrows down interface options 1

Reminds of previous knowledge 1

Table 5.2: Uses of the trainer highlighted by subjects during interviews

5.5 Requested improvements

Questions 1.4 and 3.4 (Figures 4.4 and 4.6) asked subjects about improvements they would like
to see in the trainer. Table 5.3 lists the improvements users requested during the interviews. The
most prevalent issue was the amount of space taken up by the trainer on the screen. Users found
that the trainer blocked part of the interface and often needed to move or minimize it to complete
portions of the tasks.

Another common issue was that some actions on the trainer were marked as complete before
the subject began them. Some actions (such as creating graded and ungraded assignments) were
similar enough that the trainer could not distinguish which action was being completed as it was
keeping track in the background. Because of this, completing one of the actions would result in the
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steps of the other being marked as “complete” as well. This bug will be addressed in greater depth
in the discussion.

Improvement Number of subjects

Reduce the amount of space the trainer uses 3

Prevent the steps from crossing off before completion 2

Save trainer scrolling between pages 1

Clarify “category table” in “assign weights” action 1

Table 5.3: Improvements to the inline trainer requested by users during interviews
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Step i. User begins in state 1, “How do I figure out what to do?”. Says, “so that’s going to be
adding an entry, I guess?” Opens “add entry to calendar” action. “Yes.” Reads “scroll
down to...” step. Transitions via “Trainer [No overlay].”

Step ii. User is in state 3, “Do they know what to do?” Transitions via “Yes.”
Step iii. User is in state 2, “Do I know how to do it?” Transitions via “No”.
Step iv. User is in state 1, “How do I figure out what to do?” Transitions via “Searching UI.”

Scrolls down and searches for calendar. Finds calendar block.
Step v. User is in state 3, “Do I know what to do?” Transitions via “Yes”.

Step vi. User is in state 2, “Do I know how to do it?” Transitions via “Execute operation.” Clicks
the the title of the current month in calendar.

Figure 5.1: This model represents the process through which users complete the various tasks.
Includes sample iteration through the model based on the transcript of Subject kbjk completing
Task 1.1 (adding an entry to the course calendar).
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(a) Discovery through trial and error

(b) Discovery through the trainer

Figure 5.2: Discovery process. These two excerpts from the trainer model (Figure 5.1) show the
paths that represent two ways users discovered information about the Moodle interface. The paths
for each discovery process are shown in red dashed lines.
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Figure 5.3: This model represents the path users took when using the trainer as a validator. The
path that corresponds to this use style is shown in red dashed lines.
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6 Discussion

6.1 Recommendations

Based on the observations in the pilot study, the inline trainer is a promising tool to help users
learn to navigate and use the Moodle interface. This section will talk about specific recommenda-
tions for the use of the trainer beyond the pilot study.

6.1.1 Fine-tune checks for step completion

An essential function of the trainer is its ability to track the completion of steps at any given time,
even when it is not open. Because of this, the trainer must “guess” which action is being worked on
at any given time. For actions with similar steps, the trainer has difficulty making this distinction.
For example, creating a graded and ungraded assignment differ by only a few steps. Because of
this, both actions were often marked as complete when only one was actually intended by the user.

Additionally, several steps in the “assign weights [to the grade book]” action were marked as
complete even if the user navigated to the wrong page. The page to set the grade aggregation mode
for the course (the page on which the user needed to be in order to complete the step) is nearly
identical to the page to set the grade aggregation for a grade category. When users navigated to
the category page by mistake, the trainer led them to believe they were in the correct place and
walked them through the next steps. Upon completing the steps on the category page and clicking
the save button, users were redirected to the grade book page. Because the steps had not been
completed in the right place, the trainer listed several previously-completed steps as incomplete
which caused confusion for the user.

Both of these cases can be remedied by creating steps that are more fine-tuned to the task at
hand. By looking for more specific contextual clues on the page and following more precise rules for
tracking user activity in the background, the trainer can better determine which steps and actions
have been completed by users.

6.1.2 Trainer in separate window

One common obstacle users faced was the amount of space taken up by the trainer on the screen.
Because the trainer is an element of the same web browser window as the Moodle interface, it
cannot be moved to a position in which it does not block some elements on the screen. The only
way to show the entire Moodle interface is to collapse the trainer. After collapsing and reopening
the trainer, subjects needed to reorient themselves and figure out where they left off before closing
the trainer.

To combat this, the trainer should be modified in such a way that it can be displayed in a
second browser window. This would allow the user to rearrange browser windows and place the
trainer adjacent to the Moodle interface in a way that does not block any elements. The trainer
would start as part of the same window as the Moodle interface as it does in the current design,
with the added option to “pop” it out into a separate window to allow users to decide how they
would to configure their workspace.

6.1.3 Find way to communicate conceptual model of Moodle

Some actions, such as the creation of and assignment of weights to grade book categories, required
an understanding the internal structures and organization of Moodle. In order to assign weights to
grade book categories, users must first change the grade aggregation method at the course level.
This caused confusion, because the grade aggregation method can also be changed at the category
level. The “edit” buttons for the course and category level were very similar and often led to
confusion. Users assumed they should edit the category because they were trying to set a weight
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at the category level. Many users reported that setting the aggregation method at the course level
had never occurred to them as an option, despite the text of the trainer step specifying to do so.

To combat this, the trainer should include a way to inform users of details like this in Moodle’s
internal structures and organization. This must be presented concisely so users understand the
necessary information and are not overwhelmed or tempted to skip over it.

6.1.4 Minor User Interface (UI) improvements

Additionally, the researcher recommends the following minor improvements to the trainer user
interface:

• The overlay feature should be expanded to allow multiple elements to be highlighted at once,
as some steps can be completed via more than one element.

• The scroll top of the trainer should be saved across page loads. The current version of the
trainer scrolls the action list up to the top at each page load, which means users must scroll
back to the correct place each time.

• The trainer should include a section that allows users to search for actions by title and/or
tags. This would allow quicker access than searching through the categories and subcategories,
especially as more actions are introduced.

6.2 Further research

6.2.1 Use of overlay

The overlay was anticipated to be one of the most-used features during the design phase. Although
users reported that they found the overlay feature to be useful when they needed it, they reserved
it only for cases in which they felt completely stuck. Most preferred to search the interface before
invoking the overlay. Further research could explore users’ preferences for incorporating the overlay
into their workflow and potential designs to make the overlay (or similar functionality) more relevant
and useful. When do users invoke the overlay? What motivates them to do so (or not do so)?

6.2.2 Trainer and task performance

Further research could focus on the ways in which the trainer impacts users’ abilities to complete
tasks. How well do users complete tasks when they do or do not have access to the trainer? How
does the trainer impact the completion of tasks that are performed consistently throughout the
semester? How does it impact the completion of tasks that are primarily performed at certain
points in the semester, such as the beginning or end?
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7 Concluding Remarks

The inline trainer shows promise as a tool for instructors to learn to use Moodle as part of
their normal workflow. Because of the constraints of the profession, teachers need to learn to use
technology in a way that does not take their time away from performing other essential tasks. The
changes and further research questions suggested can be used to turn the trainer into a robust tool
that can be incorporated into live instances of Moodle.

7.1 Reflection

The overarching goal of this project was to design, implement, and test an inline trainer to
help instructors learn to use Moodle. The path to achieving this goal resulted in a capstone for
academic experience at Brandeis. It gave me an opportunity to apply many concepts and skills I
learned in a theoretical capacity in a practical way. Here, I will reflect on the ways this project has
incorporated each component of my undergraduate career.

7.1.1 Computer science

While developing the trainer plugin, I learned a lot about designing code for use by others. Most
of my projects up until now have been solo projects where I am the only one who will maintain the
code. The trainer was designed with the intention of being open source and eventually passed off
to others to maintain. Because of that, I needed to plan out the code in a way that it would remain
organized and clear for others in the future. I put a lot of thought into abstracting the code in such
a way that extending the trainer can be done without modifying the core underlying mechanisms.

7.1.2 Teacher training for technology use

Conducting this study gave me insight into the ways people learn to use technology. I had previously
completed coursework and reviewed literature about the theoretical frameworks surrounding this
process, but this is the first time I consciously observed it in practice. I saw the ways in which
people explored both the trainer and Moodle interface as a whole. I got a chance to observe people
with different levels of comfort using technology and see the ways in which this affected their
approach to figuring out how to complete the tasks. Watching people repeatedly try to perform
the same tasks gave me insight into the the common ways people struggle and recover as well as
the individual approach each person takes.

7.1.3 Cognitive design and engineering

One of the most surprising takeaways I had from this project was the amount I learned about the
trainer from watching people use it. As the designer, I made assumptions about the ways people
would use the tool. I assumed people would rely heavily on the overlay tool, when in fact they
preferred to save it as a last resort. I had not considered the “trainer as a validator” style as an
approach to completing the tasks. I saw the tool as a reference to be used during the execution of
each task and did not consider its utility after the completion of a task. I learned that although I
designed and built the tool, the only way to sufficiently understand its functionality is to observe
others using it. I can use this insight to continue to improve and modify the trainer. As I design
software in the future, I will be more aware of the importance of observing and soliciting feedback
from users to better understand and improve its design.

7.1.4 Research

Before undertaking this project, I understood “research” as a vague, nebulous concept and was
unclear on the actual process. I had seen the results of prior research in the form of published
papers, but did not know what needed to be done to get to that point. As I learned at each step,
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from designing the experiment to analyzing and writing up my findings, the process became more
and more enjoyable. One of my biggest struggles with the research component was that there was
not a pre-determined answer toward which I was working. There are an infinite number of ways
to analyze and interpret the data, and given unlimited time I do not know if I would ever reach
a point of feeling as though I had covered every possible angle. Completing this project has given
me a new appreciation for and fascination with research. I have a new set of tools with which to
measure the impact of my future endeavors in the world of educational technology.
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Appendices

A Technical design of the inline trainer plugin

A.1 Proof of concept

At the beginning of this project, a Moodle block plugin was created to test whether a trainer
that sits on the edge of the screen and observes events on the page would be technically viable
(Figure A.1). The plugin is very simple. It includes only three steps towards an ”Upload file”
action. It is not movable on the screen and can only be collapsed via the block editor menu. The
plugin included early version of the main features such as the crossing off of completed steps and
the overlay functionality.

Figure A.1: A simple Moodle block plugin created to test whether an inline trainer was technical
viable

A concern with the development of the plugin was finding a way to hook into Moodle’s JavaScript
to observe the events on the page (such as clicks, key presses, etc.). Although Moodle provides
a JavaScript API, it was decided that this API would limit the abilities of the trainer. The API
was used to load the plugin once the Moodle page was loaded, but the logic within the trainer was
separate. The trainer primarily uses the jQuery5 library because of its ability to easily access all
elements of an HTML document. An advantage to this approach is that the trainer is relatively
self-contained and does not rely on other developers implementing the Moodle JavaScript API. The
plugin does not need to “know” the way any part of the Moodle User Interface (UI) is set up from a
programming standpoint, it just needs to check the resulting elements on the page. A disadvantage
is that because the trainer is unable to access Moodle’s JavaScript, it cannot subscribe to dynamic
events (e.g. opening a modal window). To combat this, certain trainer steps include short delays
( 10ms) before running certain functions to ensure the Moodle interface has had time to finish
rendering after responding to an event. While this approach seems to be successful in most cases,
it is a glorified “guess-and-check” system that is susceptible to error if any of the Moodle JavaScript
experiences a major lag. This jQuery-based approach to monitoring the page was adopted into the
final version of the trainer plugin.

The original proof of concept plugin is available on Github6

A.2 Trainer prototype

After the proof-of-concept, a prototype of the trainer was created to quickly test the usability of
the interface (Figure A.2). The prototype was created using TypeScript compiled into JavaScript.

5https://jquery.com/
6https://github.com/zakkolar/moodle-block inlinetrainer-prototype
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The layout and UI used the Angular7 framework. The prototype included a mockup of a simplified
version of Moodle to allow users to test the trainer in the context of a large application.

Figure A.2: The prototype used to test the design of the trainer

The prototype expanded on the structure of the proof-of-concept and introduced the relationship
between actions and steps. It built upon the trainer’s ability to observe the page and check for step
completion, which is detailed later in this appendix. Much of the underlying code for the steps and
actions from the prototype was incorporated into the final plugin.

The code for the prototype of the trainer is available on Github8

A.3 Trainer components

A.3.1 Moodle Plugin Interface

The part of the plugin written to interface with the backend of Moodle is written in PHP. This
constitutes a small portion of the plugin, including the following features:

• Installing/uninstalling the plugin
• Creating/updating the database structure
• Customizing plugin settings via Moodle admin interface
• Storing/retrieving user information (e.g. favorites, open/closed status of the trainer, consent

to participate in study, etc.)
• Storing/retrieving research data collection
• Attaching the plugin to each page

A.3.2 User Interface

The majority of the plugin was written in TypeScript which was compiled to JavaScript using
Webpack. The trainer interface was created using the Vue9 framework for JavaScript. Vue was
selected because of its two-way binding and relatively simplicity compared to Angular. The two-way
binding means the framework links the data to the interface, so the primary focus of development
could remain on the logic of the trainer itself.

7https://angular.io/
8https://github.com/zakkolar/inlinetrainer-prototype
9https://vuejs.org/
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A.4 Programatic design

The classes most central to the functionality of the trainer were the Action and Step classes,
shown in Figure A.3. The remainder of this section will focus primarily on the design of the
mechanism through which the trainer keeps track of the steps and their completion. See section
A.5 for a link to the Github repository in which the plugin is hosted for more information about
the code.

A.4.1 Requirements for the steps

As the technical design was planned for the inline trainer steps, several goals and challenges arose:
• The trainer should determine when steps are completed/uncompleted by observing the page

as the user interacts with it
• The trainer should infer which steps have already been completed by the user based on the

state of the page
• For steps whose completion cannot be inferred, the trainer must remember if they have been

completed
These requirements shaped the technical design of the trainer. The functional nature of

JavaScript greatly helped the implementation of these requirements. Steps stored functions de-
fined at their instantiation as properties, which provided flexibility for each step to interact with
the page in its own way.

A.4.2 Step completion

One of the most essential features of the trainer is its ability to track the completion (or uncom-
pletion) of steps. In the context of the trainer, to “uncomplete” a step is to undo the completion
of that particular step (e.g. if a step is completed when the user opens a popup window, “uncom-
pleting” that step would be closing the window). “Incomplete” is used to describe a step that has
not been completed. The most basic level of the detection of step completion takes place within
five function properties of the Step class:

checkCompleteFunction This function checks to determine if the step has been completed. De-
pending on the step, this may check for the existence of an element on the page, the value of
an input, the URL of the current page, or any number of other properties.

watchCompleteFunction This function attaches a listener to the page to detect when the step may
be complete and invokes the checkCompleteFunction to make the determination. This is
useful for steps that can be completed after the page is loaded, such as filling in a form field.

watchUncompleteFunction This function is similar to checkCompleteFunction, but serves the
opposite purpose. After a step is complete, the watchUncompleteFunction function attaches
a listener to detect when the completion may have been uncompleted. Upon being triggered,
the listener executes the checkCompleteFunction to confirm.

unwatchCompleteFunction This function removes the watcher set by watchCompleteFunction

when an action is determined to be complete. Because the completion of an action may
trigger other events within the trainer (such as updating the current step, setting watchers
for the next step, etc.), it should only be reported once. Removing the watcher immediately
after an step is completed prevents the same step from being marked as complete multiple
times in a row.
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Figure A.3: Class diagram for the Action and Step classes, two classes most important to the
functionality of the trainer

unwatchUncompleteFunction Similar to unwatchCompleteFunction, this function removes the
watcher set by watchUncompleteFunction when an action is determined to have been un-
completed.

Figure A.4 shows a diagram of the relationship between these functions.

A.4.3 Prerequisites and Postrequisites

Because the trainer is added to Moodle via JavaScript, it is reinitialized on every page load. This
means that it needs to infer the completion of steps completed on previous page loads that it may
not have observed directly. In some cases, the checkCompleteFunction is sufficient to accomplish
this. Even if the trainer cannot watch the completion of the step, the page is altered in such a way
that checkCompleteFunction is able to determine that the step has been completed. For example,
clicking the “turn editing on” adds several indicators to the page that editing mode is enabled.
Even if the page is reloaded, these indicators are present until editing mode is turned off.

In other cases, checkCompleteFunction is not sufficient. For some steps, evidence of comple-
tion is only available on certain pages. If the page that shows such evidence is not visible, the
checkCompleteFunction cannot determine if the step has been completed. Take creating a graded
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Figure A.4: The cycle of completion functions for a step in the trainer

assignment as an example. The beginning steps are summarized as follows:
1. Navigate to the course page
2. Click “Turn editing on”
3. Click “Add an activity or resource”
4. Select “assignment” as the activity type
5. Click “add”
6. Type your assignment’s name
The first four steps are completed on the course page. While the user is on the course page, the

trainer can detect whether each of these steps has been completed by observing the page. Even if a
step is not completed in the same page load, for example, if the user previously enabled the editing
mode, the trainer can observe the state of the page to determine that the step has been completed
at some point. But as soon as the user clicks the “add” button in step five, they are redirected to
a new page to fill in the details of the assignment. Once this assignment page is loaded, the trainer
is unable to tell whether the steps that take place on the course page have been completed.

Although the trainer is unable to directly observe the completion of some steps, it can make
inferences if it “understands” the relationship between steps. Postrequisites and prerequisites were
introduced to help the trainer with this understanding.

Let Step A be some step for an action in the trainer. Steps who have Step A as a postrequisite
are implied to be complete if and only if Step A is also complete. In other words, if we observe
Step A to be complete, we can assume any step with Step A as a postrequisite to be complete as
well. If a step has multiple postrequisites, just one must be complete to infer the completeness of
the original step.

In the above example, the completion of step 5 is determined by comparing the URL of the
current page to the URL of the assignment details page. If they match, step 5 is complete. Steps 1
- 4 all have step 5 as a postrequisite. This means that although the trainer cannot see evidence of
their completion on the assignment page, it can safely assume that they have all been completed.

Prerequisites are similar to postrequisites, but are used to determine incompleteness. Step A is
implied to be incomplete if and only if at least one of its prerequisites is incomplete.

A.4.4 Determining the completeness of a step

Because of the prerequisite and postrequisite properties, just executing the checkCompleteFunction
is not enough to determine the completeness of a step. The algorithm used to determine if a step
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is complete is presented here in pseudocode:

# check i f we can d i r e c t l y observe the s tep as complete
observedComplete <− checkCompleteFunction ( ) # boolean

# check i f the p r e r e q u i s i t e s are a l l complete
p r e r equ i s i t e sCompl e t e <− t rue
f o r each p r e r e q u i s i t e do

i f p r e r e q u i s i t e i s not complete do
pre r equ i s i t e sCompl e t e <− f a l s e

# check i f at l e a s t one p o s t r e q u i s i t e i s complete
po s t r equ i s i t e sComp l e t e <− f a l s e
f o r each p o s t r e q u i s i t e do

i f p o s t r e q u i s i t e i s complete
po s t r equ i s i t e sComp l e t e <− t rue

i f p r e r equ i s i t e sCompl e t e = f a l s e
s tep i s not complete

e l s e i f observedComplete = true or po s t r equ i s i t e sCompl e t e = true
step i s complete

In the trainer, this algorithm is implemented with promises and callbacks to be used asyn-
chronously. For the sake of clarity, it is presented synchronously here.

A.5 Plugin repository

The code for the plugin has many more features and considerations than there is space to include
or even describe here. However, it has been made open-source and is available on Github10. The
branch FINAL RESEARCH CODE will not be updated to preserve the state of the code during
the research.

10https://github.com/zakkolar/moodle-local inlinetrainer/tree/FINAL RESEARCH CODE
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B Moodle plugin for experiment administration

The administration of experiments required many repeated tasks, including creating user ac-
counts, creating courses, populating the courses with sections, assigning users to roles in the courses,
and giving users the correct capabilities to use the inline trainer. A Moodle plugin was created to
help automate this process to save time and reduce the likelihood of error in the setup for the trials
(Figure B.1). The plugin provided a list of users and their corresponding courses. It generated a
link for them to fill out the demographic survey that automatically included their unique identifier.
It showed their real name (only for the purposes of keeping track during the experiment phase)
as well as an anonymous identifier to distinguish them within the dataset without revealing their
identity. The plugin’s settings allowed the proctor to set default information such as the number of
courses to be created for each user, the course naming scheme, the username scheme, the default
sections to be shown in the course, and the roles that should be given to users upon creation.

Figure B.1: A table of experiments displayed by the experiment administration plugin

The source code for the plugin can be found on Github11.

11https://github.com/zakkolar/moodle-local inlinetrainer experiments
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C Web-based tool analyze Atlas.TI project

Atlas.TI is a powerful tool for tagging qualitative data, but does not offer an extensive set of
analysis tools. However, projects can be exported in XML format. Because of this, a web-based
tool was created to parse the XML, convert it to JavaScript, and manipulate and display the data
in useful ways. The tool was created using JavaScript and the Vue framework.

The source code for this tool can be found on Github12.

12https://github.com/zakkolar/atlasTI-analysis
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D Changes between the first and second rounds

After observing and gathering feedback from subjects, the following changes were made to the
Inline Trainer interface to attempt to reduce errors and confusion:

D.1 “Start Over” button

In some cases, the trainer was unable to distinguish which action the user was attempting to
complete and marked multiple sets of steps as complete simultaneously. This led to confusion when
subjects saw that certain steps were already marked as complete when they had not yet begun the
second of the two similar tasks.

The ”Start over“ button was originally placed below each action with the intention for users to
see it as they scrolled down and completed an action. However, when subjects came across a new
action that was already marked as complete, they generally did not scroll down low enough to see
the “Start over” button. To make the button more visible in this situation, the “Start over” button
was displayed a second time above the action when all of its steps were marked as complete.

The text of the button was changed from “Start over” to “(click here to start over)” in an
attempt to better distinguish the text as a clickable link.

D.2 Assigning weights to categories

The actions inside of the “Grade book setup” caused confusion to subjects. One source of
confusion was the separation of the creating and assigning weights to grade book category actions.
The task list presented a list of categories with their corresponding weights as they would appear
on a syllabus. Moodle automatically adjusts the weights to total at 100. Because of this, users
must create all grade categories before assigning weights so that their sum can be adjusted to 100.

Most users attempted to create the categories and assign category weights at the same time.
They often began in the “Create grade categories” action in the trainer (the optimal starting place
to complete this task) and then opened the “Assign weights” category and attempted to complete
the steps for the second action before finishing the first. To prevent this, the “Assign weights”
action was given a new first step that instructed the users to “Create all of your grade categories
before assigning weights.” Because there is no way for the trainer to detect when the user has
created all necessary categories, the step included a link for users to click upon completion to signal
the trainer to move onto the next step in the action.

Additionally, users were often confused by the “At the top of the category table, find the name
of your course. On the right of that row, click ’Edit’ and then ’Edit settings”’ step in the “Assign
weights” step. Rather than clicking the “Edit settings” link at the very top of the course, users
would often click “Edit settings” next to one of the categories that had just been created. The text,
“to edit the course-level settings” was added to the end of the existing description in an attempt
to clarify this.
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E Experiment materials

E.1 Pre-experiment survey questions

The following online survey was given to subjects before their participation in the experiment.

What is your primary role in classes?
a. Instructor
b. Teaching assistant
c. Student
d. My position is outside of the classroom
e. Other (please specify)

What is your role at Brandeis University?
a. Professor/faculty
b. Department Staff
c. Undergraduate student
d. Master’s Student
e. PhD Student
f. Other (please specify)

Which of these statements do you most identify with?
a. I am excellent with technology; I can help others use it
b. I’m very comfortable with technology
c. I can use technology
d. I can use basic technology, but in a limited way
e. I’m uncomfortable with technology

How many semesters have you used LATTE at Brandeis?
a. This is my first time
b. 2-3 semesters
c. More than 3 semesters

Which of the following actions have you completed using LATTE? Mark all that apply.
a. Uploading course syllabus
b. Managing course readings
c. Creating assignments
d. Evaluating/scoring assignments
e. Submitting assignments
f. Reviewing feedback on assignments
g. Posting documents
h. Setting up the grade book
i. Recording grades in the gradebook
j. Viewing grades in the gradebook
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Tasks (day 1) 
Suppose you are an instructor for a writing course. Your task will be to set up the gradebook 
and create a few assignments to start the semester. 
 

1. To start this task, we need to add our first lecture to the course calendar. Create an 
entry in the course calendar with the following details: 

Event title: UWS Lecture 
Date: 21 March 2018  
 

2. Oops! We forgot to add the duration. Edit your calendar entry and set the duration to 
120 minutes so students know what they’ve gotten themselves into. 
 

3. Next, we need to create some graded assignments so students can submit their work for 
grades: 

a. Create a graded assignment under the “Close Read” section of the main course 
page with the following details: 

Assignment name: Close Read Draft 
Description: Submit a draft of your close read essay. 
Due date: 15 April 2018 
Maximum grade: 60 points 

b. Create another graded assignment under the “Close Read” section of the main 
course page with the following details: 

Assignment name: Close Read Draft 
Description: Submit a revised draft of your close read essay 
Due date: 18 April 2018 
Maximum grade: 60 points 

 
4. Finally, we need to create a pre-draft assignment for students to submit. This 

assignment will not be graded; but students will receive written feedback from you after 
submission. 

a. Create an ungraded assignment under the “Lens Analysis” section of the main 
course page with the following details: 

Assignment name: Lens Pre-Draft 1 
Description: Write a paragraph summarizing your lens text. 
Due date: 21 April 2018 

b. Create another ungraded assignment under the “Lens Analysis” section of the 
main course page with the following details: 

Assignment name: Lens Pre-Draft 2 
Description: Write a paragraph summarizing your analysis text. 
Due date: 25 April 2018 

 
  

E.2 Task handout for Session 1.1
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Tasks (day 2) 
Imagine you are a University Writing Seminar instructor. Your task will be to set up the 
gradebook and create a few assignments to start the semester. 
 

1. First, we need to create some graded assignments so that students can submit their 
work for grades. 

a. Create a graded assignment under the “Close Read” section of the main course 
page with the following details: 

Assignment name: Close Read Essay 
Description: Submit your final Close Read Essay. 
Due date: 19 April 2018 
Maximum grade: 90 points 

b. Create another graded assignment under the “Close Read” section of the main 
course page with the following details: 

Assignment name: Close Read Revision 
Description: Submit any revisions you wish to make based on my 
feedback. 
Due date: 27 April 2018 
Maximum grade: 90 points 

 
 

2. Next, we need to get the gradebook ready for the semester. Configure the gradebook to 
accept the following categories and weights for the given syllabus: 

Pre-draft work: 20% 
Rough drafts: 30% 
Final drafts: 50% 
 

E.3 Task handout for Session 1.2
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Tasks 
Suppose you are an instructor for a writing course. Your task will be to set up the gradebook 
and create a few assignments to start the semester. 
 

1. To start this task, we need to add our first lecture to the course calendar. Create an 
entry in the course calendar with the following details: 

Event title: UWS Lecture 
Date: 21 March 2018  

2. Next, we need to create some graded assignments so students can submit their work for 
grades: 

a. Create a graded assignment under the “Close Read” section of the main course 
page with the following details: 

Assignment name: Close Read Draft 
Description: Submit a draft of your close read essay. 
Due date: 15 April 2018 
Maximum grade: 60 points 

b. Create another graded assignment under the “Close Read” section of the main 
course page with the following details: 

Assignment name: Revised Close Read Draft 
Description: Submit a revised draft of your close read essay 
Due date: 18 April 2018 
Maximum grade: 60 points 

 
3. Next, we need to get the gradebook ready for the semester. For this task, you can 

ignore the assignments you created previously. Configure the gradebook to accept the 
following categories and weights for the given syllabus: 

Pre-draft work: 20% 
Rough drafts: 30% 
Final drafts: 50% 

 

E.4 Task handout for Session 2.1
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